Papers
Topics
Authors
Recent
2000 character limit reached

An analysis of the practical DPG method

Published 21 Jul 2011 in math.NA | (1107.4293v2)

Abstract: In this work we give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree $p$ on each mesh element. Earlier works showed that there is a "trial-to-test" operator $T$, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator $T$ is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply $T$. In practical computations, $T$ is approximated using polynomials of some degree $r > p$ on each mesh element. We show that this approximation maintains optimal convergence rates, provided that $r\ge p+N$, where $N$ is the space dimension (two or more), for the Laplace equation. We also prove a similar result for the DPG method for linear elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also included.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.