Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of Weighted Min-Sum Decoding Via Dynamic Programming on Trees (1107.3177v1)

Published 15 Jul 2011 in cs.IT and math.IT

Abstract: Applying the max-product (and belief-propagation) algorithms to loopy graphs is now quite popular for best assignment problems. This is largely due to their low computational complexity and impressive performance in practice. Still, there is no general understanding of the conditions required for convergence and/or the optimality of converged solutions. This paper presents an analysis of both attenuated max-product (AMP) decoding and weighted min-sum (WMS) decoding for LDPC codes which guarantees convergence to a fixed point when a weight parameter, {\beta}, is sufficiently small. It also shows that, if the fixed point satisfies some consistency conditions, then it must be both the linear-programming (LP) and maximum-likelihood (ML) solution. For (dv,dc)-regular LDPC codes, the weight must satisfy {\beta}(dv-1) \leq 1 whereas the results proposed by Frey and Koetter require instead that {\beta}(dv-1)(dc-1) < 1. A counterexample which shows a fixed point might not be the ML solution if {\beta}(dv-1) > 1 is also given. Finally, connections are explored with recent work by Arora et al. on the threshold of LP decoding.

Citations (3)

Summary

We haven't generated a summary for this paper yet.