Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Budget Feasible Mechanism Design via Random Sampling (1107.2994v2)

Published 15 Jul 2011 in cs.GT

Abstract: Budget feasible mechanism considers algorithmic mechanism design questions where there is a budget constraint on the total payment of the mechanism. An important question in the field is that under which valuation domains there exist budget feasible mechanisms that admit `small' approximations (compared to a socially optimal solution). Singer \cite{PS10} showed that additive and submodular functions admit a constant approximation mechanism. Recently, Dobzinski, Papadimitriou, and Singer \cite{DPS11} gave an $O(\log2n)$ approximation mechanism for subadditive functions and remarked that: "A fundamental question is whether, regardless of computational constraints, a constant-factor budget feasible mechanism exists for subadditive function." In this paper, we give the first attempt to this question. We give a polynomial time $O(\frac{\log n}{\log\log n})$ sub-logarithmic approximation ratio mechanism for subadditive functions, improving the best known ratio $O(\log2 n)$. Further, we connect budget feasible mechanism design to the concept of approximate core in cooperative game theory, and show that there is a mechanism for subadditive functions whose approximation is, via a characterization of the integrality gap of a linear program, linear to the largest value to which an approximate core exists. Our result implies in particular that the class of XOS functions, which is a superclass of submodular functions, admits a constant approximation mechanism. We believe that our work could be a solid step towards solving the above fundamental problem eventually, and possibly, with an affirmative answer.

Citations (3)

Summary

We haven't generated a summary for this paper yet.