The Reversal Ratio of a Poset
Abstract: Felsner and Reuter introduced the linear extension diameter of a partially ordered set $\mathbf{P}$, denoted $\mbox{led}(\mathbf{P})$, as the maximum distance between two linear extensions of $\mathbf{P}$, where distance is defined to be the number of incomparable pairs appearing in opposite orders (reversed) in the linear extensions. In this paper, we introduce the reversal ratio $RR(\mathbf{P})$ of $\mathbf{P}$ as the ratio of the linear extension diameter to the number of (unordered) incomparable pairs. We use probabilistic techniques to provide a family of posets $\mathbf{P}_k$ on at most $k\log k$ elements for which the reversal ratio $RR(\mathbf{P}_k)\leq C/\log k$, where $C$ is a constant. We also examine the questions of bounding the reversal ratio in terms of order dimension and width.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.