Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent

Published 13 Jul 2011 in cs.LG | (1107.2490v2)

Abstract: For large scale learning problems, it is desirable if we can obtain the optimal model parameters by going through the data in only one pass. Polyak and Juditsky (1992) showed that asymptotically the test performance of the simple average of the parameters obtained by stochastic gradient descent (SGD) is as good as that of the parameters which minimize the empirical cost. However, to our knowledge, despite its optimal asymptotic convergence rate, averaged SGD (ASGD) received little attention in recent research on large scale learning. One possible reason is that it may take a prohibitively large number of training samples for ASGD to reach its asymptotic region for most real problems. In this paper, we present a finite sample analysis for the method of Polyak and Juditsky (1992). Our analysis shows that it indeed usually takes a huge number of samples for ASGD to reach its asymptotic region for improperly chosen learning rate. More importantly, based on our analysis, we propose a simple way to properly set learning rate so that it takes a reasonable amount of data for ASGD to reach its asymptotic region. We compare ASGD using our proposed learning rate with other well known algorithms for training large scale linear classifiers. The experiments clearly show the superiority of ASGD.

Citations (154)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

  1. Wei Xu 

Collections

Sign up for free to add this paper to one or more collections.