Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Index Coding via Semidefinite Programming (1107.1958v1)

Published 11 Jul 2011 in cs.DS, cs.DM, cs.IT, and math.IT

Abstract: In the index coding problem, introduced by Birk and Kol (INFOCOM, 1998), the goal is to broadcast an n bit word to n receivers (one bit per receiver), where the receivers have side information represented by a graph G. The objective is to minimize the length of a codeword sent to all receivers which allows each receiver to learn its bit. For linear index coding, the minimum possible length is known to be equal to a graph parameter called minrank (Bar-Yossef et al., FOCS, 2006). We show a polynomial time algorithm that, given an n vertex graph G with minrank k, finds a linear index code for G of length $\widetilde{O}(n{f(k)})$, where f(k) depends only on k. For example, for k=3 we obtain f(3) ~ 0.2574. Our algorithm employs a semidefinite program (SDP) introduced by Karger, Motwani and Sudan (J. ACM, 1998) for graph coloring and its refined analysis due to Arora, Chlamtac and Charikar (STOC, 2006). Since the SDP we use is not a relaxation of the minimization problem we consider, a crucial component of our analysis is an upper bound on the objective value of the SDP in terms of the minrank. At the heart of our analysis lies a combinatorial result which may be of independent interest. Namely, we show an exact expression for the maximum possible value of the Lovasz theta-function of a graph with minrank k. This yields a tight gap between two classical upper bounds on the Shannon capacity of a graph.

Citations (29)

Summary

We haven't generated a summary for this paper yet.