Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetic of 0-cycles on varieties defined over number fields (1107.1634v2)

Published 8 Jul 2011 in math.AG and math.NT

Abstract: Let $X$ be a rationally connected algebraic variety, defined over a number field $k$. We find a relation between the arithmetic of rational points on $X$ and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for $K$-rational points on $X_K$ for all finite extensions $K/k$; (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree 1 on $X_K$ for all finite extensions $K/k$; (3) a certain sequence of local-global type for Chow groups of 0-cycles on $X_K$ is exact for all finite extensions $K/k$. We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle. As an application, we prove the exactness of the sequence mentioned above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.

Summary

We haven't generated a summary for this paper yet.