Papers
Topics
Authors
Recent
Search
2000 character limit reached

Arithmetic of 0-cycles on varieties defined over number fields

Published 8 Jul 2011 in math.AG and math.NT | (1107.1634v2)

Abstract: Let $X$ be a rationally connected algebraic variety, defined over a number field $k$. We find a relation between the arithmetic of rational points on $X$ and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for $K$-rational points on $X_K$ for all finite extensions $K/k$; (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree 1 on $X_K$ for all finite extensions $K/k$; (3) a certain sequence of local-global type for Chow groups of 0-cycles on $X_K$ is exact for all finite extensions $K/k$. We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle. As an application, we prove the exactness of the sequence mentioned above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.