Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Proof of the Boyd-Carr Conjecture (1107.1628v1)

Published 8 Jul 2011 in cs.DS

Abstract: Determining the precise integrality gap for the subtour LP relaxation of the traveling salesman problem is a significant open question, with little progress made in thirty years in the general case of symmetric costs that obey triangle inequality. Boyd and Carr [3] observe that we do not even know the worst-case upper bound on the ratio of the optimal 2-matching to the subtour LP; they conjecture the ratio is at most 10/9. In this paper, we prove the Boyd-Carr conjecture. In the case that a fractional 2-matching has no cut edge, we can further prove that an optimal 2-matching is at most 10/9 times the cost of the fractional 2-matching.

Citations (19)

Summary

We haven't generated a summary for this paper yet.