Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Tverberg Points in Linear Time for Any Fixed Dimension (1107.0104v3)

Published 1 Jul 2011 in cs.CG and cs.DS

Abstract: Let P be a d-dimensional n-point set. A Tverberg-partition of P is a partition of P into r sets P_1, ..., P_r such that the convex hulls conv(P_1), ..., conv(P_r) have non-empty intersection. A point in the intersection of the conv(P_i)'s is called a Tverberg point of depth r for P. A classic result by Tverberg implies that there always exists a Tverberg partition of size n/(d+1), but it is not known how to find such a partition in polynomial time. Therefore, approximate solutions are of interest. We describe a deterministic algorithm that finds a Tverberg partition of size n/4(d+1)3 in time d{O(log d)} n. This means that for every fixed dimension we can compute an approximate Tverberg point (and hence also an approximate centerpoint) in linear time. Our algorithm is obtained by combining a novel lifting approach with a recent result by Miller and Sheehy (2010).

Citations (37)

Summary

We haven't generated a summary for this paper yet.