Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Approximations of Dynamic Risk Measures (1106.6102v2)

Published 30 Jun 2011 in q-fin.RM and math.OC

Abstract: This paper compares two different frameworks recently introduced in the literature for measuring risk in a multi-period setting. The first corresponds to applying a single coherent risk measure to the cumulative future costs, while the second involves applying a composition of one-step coherent risk mappings. We summarize the relative strengths of the two methods, characterize several necessary and sufficient conditions under which one of the measurements always dominates the other, and introduce a metric to quantify how close the two risk measures are. Using this notion, we address the question of how tightly a given coherent measure can be approximated by lower or upper-bounding compositional measures. We exhibit an interesting asymmetry between the two cases: the tightest possible upper-bound can be exactly characterized, and corresponds to a popular construction in the literature, while the tightest-possible lower bound is not readily available. We show that testing domination and computing the approximation factors is generally NP-hard, even when the risk measures in question are comonotonic and law-invariant. However, we characterize conditions and discuss several examples where polynomial-time algorithms are possible. One such case is the well-known Conditional Value-at-Risk measure, which is further explored in our companion paper [Huang, Iancu, Petrik and Subramanian, "Static and Dynamic Conditional Value at Risk" (2012)]. Our theoretical and algorithmic constructions exploit interesting connections between the study of risk measures and the theory of submodularity and combinatorial optimization, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.