Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ideal Glass Transitions by Random Pinning (1106.5513v2)

Published 27 Jun 2011 in cond-mat.dis-nn, cond-mat.soft, and cond-mat.stat-mech

Abstract: We study the effect of freezing the positions of a fraction $c$ of particles from an equilibrium configuration of a supercooled liquid at a temperature $T$. We show that within the Random First-Order Transition theory pinning particles leads to an ideal glass transition for a critical fraction $c=c_{K}(T)$ even for moderate super-cooling, e.g. close to the Mode-Coupling transition temperature. We first derive the phase diagram in the $T-c$ plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for $|c-c_{K}(T)|\rightarrow 0$, in particular the divergence of length and time scales. These are dominated by two zero-temperature fixed points. We also show that for $c=c_{K}(T)$ the typical distance between frozen particles is related to the static point-to-set lengthscale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition.

Summary

We haven't generated a summary for this paper yet.