Papers
Topics
Authors
Recent
2000 character limit reached

Littlewood identity and Crystal bases

Published 27 Jun 2011 in math.RT | (1106.5286v1)

Abstract: We give a new combinatorial model for the crystals of integrable highest weight modules over the classical Lie algebras of type $B$ and $C$ in terms of classical Young tableux. We then obtain a new description of its Littlewood-Richardson rule and a maximal Levi branching rule in terms of classical Littlewood-Richardson tableaux, which extends in a bijective way the well-known stable formulas at large ranks. We also show that this tableau model admits a natural superization and it produces the characters of irreducible highest weight modules over orthosymplectic Lie superalgebras, which correspond to the integrable highest weight modules over the classical Lie algebras of type $B$ and $C$ under the Cheng-Lam-Wang's super duality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.