Littlewood identity and Crystal bases
Abstract: We give a new combinatorial model for the crystals of integrable highest weight modules over the classical Lie algebras of type $B$ and $C$ in terms of classical Young tableux. We then obtain a new description of its Littlewood-Richardson rule and a maximal Levi branching rule in terms of classical Littlewood-Richardson tableaux, which extends in a bijective way the well-known stable formulas at large ranks. We also show that this tableau model admits a natural superization and it produces the characters of irreducible highest weight modules over orthosymplectic Lie superalgebras, which correspond to the integrable highest weight modules over the classical Lie algebras of type $B$ and $C$ under the Cheng-Lam-Wang's super duality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.