Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interesting Multi-Relational Patterns (1106.4475v2)

Published 22 Jun 2011 in cs.DB, cs.DS, and cs.SI

Abstract: Mining patterns from multi-relational data is a problem attracting increasing interest within the data mining community. Traditional data mining approaches are typically developed for highly simplified types of data, such as an attribute-value table or a binary database, such that those methods are not directly applicable to multi-relational data. Nevertheless, multi-relational data is a more truthful and therefore often also a more powerful representation of reality. Mining patterns of a suitably expressive syntax directly from this representation, is thus a research problem of great importance. In this paper we introduce a novel approach to mining patterns in multi-relational data. We propose a new syntax for multi-relational patterns as complete connected subgraphs in a representation of the database as a K-partite graph. We show how this pattern syntax is generally applicable to multirelational data, while it reduces to well-known tiles [7] when the data is a simple binary or attribute-value table. We propose RMiner, an efficient algorithm to mine such patterns, and we introduce a method for quantifying their interestingness when contrasted with prior information of the data miner. Finally, we illustrate the usefulness of our approach by discussing results on real-world and synthetic databases.

Citations (36)

Summary

We haven't generated a summary for this paper yet.