Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform asymptotics for the full moment conjecture of the Riemann zeta function (1106.4352v3)

Published 21 Jun 2011 in math.NT, math-ph, and math.MP

Abstract: Conrey, Farmer, Keating, Rubinstein, and Snaith, recently conjectured formulas for the full asymptotics of the moments of $L$-functions. In the case of the Riemann zeta function, their conjecture states that the $2k$-th absolute moment of zeta on the critical line is asymptotically given by a certain $2k$-fold residue integral. This residue integral can be expressed as a polynomial of degree $k2$, whose coefficients are given in exact form by elaborate and complicated formulas. In this article, uniform asymptotics for roughly the first $k$ coefficients of the moment polynomial are derived. Numerical data to support our asymptotic formula are presented. An application to bounding the maximal size of the zeta function is considered.

Summary

We haven't generated a summary for this paper yet.