Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Seifert graphs of a link diagram and its parallels (1106.4197v1)

Published 21 Jun 2011 in math.GT and math.CO

Abstract: Recently, Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus extended the notion of a Tait graph by associating a set of ribbon graphs (or equivalently, embedded graphs) to a link diagram. Here we focus on Seifert graphs, which are the ribbon graphs of a knot or link diagram that arise from Seifert states. We provide a characterization of Seifert graphs in terms of Eulerian subgraphs. This characterization can be viewed as a refinement of the fact that Seifert graphs are bipartite. We go on to examine the family of ribbon graphs that arises by forming the parallels of a link diagram and determine how the genus of the ribbon graph of a $r$-fold parallel of a link diagram is related to that of the original link diagram.

Summary

We haven't generated a summary for this paper yet.