Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Anomalous diffusion for a correlated process with long jumps (1106.3893v1)

Published 20 Jun 2011 in cond-mat.stat-mech

Abstract: We discuss diffusion properties of a dynamical system, which is characterised by long-tail distributions and finite correlations. The particle velocity has the stable L\'evy distribution; it is assumed as a jumping process (the kangaroo process) with a variable jumping rate. Both the exponential and the algebraic form of the covariance -- defined for the truncated distribution -- are considered. It is demonstrated by numerical calculations that the stationary solution of the master equation for the case of power-law correlations decays with time, but a simple modification of the process makes the tails stable. The main result of the paper is a finding that -- in contrast to the velocity fluctuations -- the position variance may be finite. It rises with time faster than linearly: the diffusion is anomalously enhanced. On the other hand, a process which follows from a superposition of the Ornstein-Uhlenbeck-L\'evy processes always leads to position distributions with a divergent variance which means accelerated diffusion.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.