Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Part II (1106.2204v3)

Published 11 Jun 2011 in math.RA and math.LO

Abstract: Part I proved that for every quasivariety K of structures (which may have both operations and relations) there is a semilattice S with operators such that he lattice of quasi-equational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S,+,0,F). It is known that if S is a join semilattice with 0 (and no operators), then there is a quasivariety Q such that the lattice of theories of Q is isomorphic to Con(S,+,0). We prove that if S is a semilattice having both 0 and 1 with a group G of operators acting on S, and each operator in G fixes both 0 and 1, then there is a quasivariety W such that the lattice of quasi-equational theories of W is isomorphic to Con(S,+,0,G).

Summary

We haven't generated a summary for this paper yet.