Scaling in large Prandtl number turbulent thermal convection (1106.1548v1)
Abstract: We study the scaling properties of heat transfer $Nu$ in turbulent thermal convection at large Prandtl number $Pr$ using a quasi-linear theory. We show that two regimes arise, depending on the Reynolds number $Re$. At low Reynolds number, $Nu Pr{-1/2}$ and $Re$ are a function of $Ra Pr{-3/2}$. At large Reynolds number $Nu Pr{1/3}$ and $Re Pr$ are function only of $Ra Pr{2/3}$ (within logarithmic corrections). In practice, since $Nu$ is always close to $Ra{1/3}$, this corresponds to a much weaker dependence of the heat transfer in the Prandtl number at low Reynolds number than at large Reynolds number. This difference may solve an existing controversy between measurements in SF6 (large $Re$) and in alcohol/water (lower $Re$). We link these regimes with a possible global bifurcation in the turbulent mean flow. We further show how a scaling theory could be used to describe these two regimes through a single universal function. This function presents a bimodal character for intermediate range of Reynolds number. We explain this bimodality in term of two dissipation regimes, one in which fluctuation dominate, and one in which mean flow dominates. Altogether, our results provide a six parameters fit of the curve $Nu(Ra,Pr)$ which may be used to describe all measurements at $Pr\ge 0.7$.