Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector valued Macdonald polynomials (1106.0875v1)

Published 5 Jun 2011 in math.CO, math.OA, and math.RT

Abstract: This paper defines and investigates nonsymmetric Macdonald polynomials with values in an irreducible module of the Hecke algebra of type $A_{N-1}$. These polynomials appear as simultaneous eigenfunctions of Cherednik operators. Several objects and properties are analyzed, such as the canonical bilinear form which pairs polynomials with those arising from reciprocals of the original parameters, and the symmetrization of the Macdonald polynomials. The main tool of the study is the Yang-Baxter graph. We show that these Macdonald polynomials can be easily computed following this graph. We give also an interpretation of the symmetrization and the bilinear forms applied to the Macdonald polynomials in terms of the Yang-Baxter graph.

Summary

We haven't generated a summary for this paper yet.