Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Central Limit Theorem for Linear Processes with Infinite Variance (1105.6129v1)

Published 30 May 2011 in math.PR

Abstract: This paper addresses the following classical question: giving a sequence of identically distributed random variables in the domain of attraction of a normal law, does the associated linear process satisfy the central limit theorem? We study the question for several classes of dependent random variables. For independent and identically distributed random variables we show that the central limit theorem for the linear process is equivalent to the fact that the variables are in the domain of attraction of a normal law, answering in this way an open problem in the literature. The study is also motivated by models arising in economic applications where often the innovations have infinite variance, coefficients are not absolutely summable, and the innovations are dependent.

Summary

We haven't generated a summary for this paper yet.