Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delay Optimal Event Detection on Ad Hoc Wireless Sensor Networks (1105.6065v1)

Published 30 May 2011 in cs.NI

Abstract: We consider a small extent sensor network for event detection, in which nodes take samples periodically and then contend over a {\em random access network} to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center to process the measurements. The Bayesian setting is assumed; i.e., the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is \emph{network-oblivious} and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is \emph{network-aware} and processes measurements as they arrive, but in a time causal order. In this case, the decision statistic depends on the network delays as well, whereas in the network-oblivious case, the decision statistic does not depend on the network delays. This yields a Bayesian change detection problem with a tradeoff between the random network delay and the decision delay; a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network--oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network--aware case, the optimal stopping problem is analysed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient statistic for decision is found to be the network-state and the posterior probability of change having occurred given the measurements received and the state of the network. The optimal regimes are studied using simulation.

Citations (10)

Summary

We haven't generated a summary for this paper yet.