Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the number (heights) of integer solutions, if these solutions form a finite set? (1105.5747v27)

Published 29 May 2011 in math.LO and math.NT

Abstract: Let E_n={x_i=1, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k \in {1,...,n}}. If Matiyasevich's conjecture on finite-fold Diophantine representations is true, then for every computable function f:N->N there is a positive integer m(f) such that for each integer n>=m(f) there exists a system S \subseteq E_n which has at least f(n) and at most finitely many solutions in integers x_1,...,x_n. This conclusion contradicts to the author's conjecture on integer arithmetic, which implies that the heights of integer solutions to a Diophantine equation are computably bounded, if these solutions form a finite set.

Summary

We haven't generated a summary for this paper yet.