Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Lagrangian Decomposition and Excessive Gap Smoothing Technique for Solving Large-Scale Separable Convex Optimization Problems (1105.5427v3)

Published 26 May 2011 in math.OC and cs.SY

Abstract: A new algorithm for solving large-scale convex optimization problems with a separable objective function is proposed. The basic idea is to combine three techniques: Lagrangian dual decomposition, excessive gap and smoothing. The main advantage of this algorithm is that it dynamically updates the smoothness parameters which leads to numerically robust performance. The convergence of the algorithm is proved under weak conditions imposed on the original problem. The rate of convergence is $O(\frac{1}{k})$, where $k$ is the iteration counter. In the second part of the paper, the algorithm is coupled with a dual scheme to construct a switching variant of the dual decomposition. We discuss implementation issues and make a theoretical comparison. Numerical examples confirm the theoretical results.

Summary

We haven't generated a summary for this paper yet.