Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derived categories of coherent sheaves and motives of K3 surfaces (1105.4568v1)

Published 23 May 2011 in math.AG and math.KT

Abstract: Let X and Y be smooth complex projective varieties. Orlov conjectured that if X and Y are derived equivalent then their motives M(X) and M(Y) are isomorphic in Voevodsky's triangulated category of geometrical motives with rational coefficients. In this paper we prove the conjecture in the case X is a K3 surface admitting an elliptic fibration (a case that always occurs if the Picard rank of X is at least 5) with finite-dimensional Chow motive. We also relate this result with a conjecture by Huybrechts showing that, for a K3 surface with a symplectic involution, the finite-dimensionality of its motive implies that the involution acts as the identity on the Chow group of 0-cycles. We give examples of pairs of K3 surfaces with the same finite-dimensional motive but not derived equivalent.

Summary

We haven't generated a summary for this paper yet.