Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brownian motion and Harmonic functions on Sol(p,q) (1105.4430v1)

Published 23 May 2011 in math.PR and math.DG

Abstract: The Lie group Sol(p,q) is the semidirect product induced by the action of the real numbers R on the plane R2 which is given by (x,y) --> (exp{p z} x, exp{-q z} y), where z is in R. Viewing Sol(p,q) as a 3-dimensional manifold, it carries a natural Riemannian metric and Laplace-Beltrami operator. We add a linear drift term in the z-variable to the latter, and study the associated Brownian motion with drift. We derive a central limit theorem and compute the rate of escape. Also, we introduce the natural geometric compactification of Sol(p,q) and explain how Brownian motion converges almost surely to the boundary in the resulting topology. We also study all positive harmonic functions for the Laplacian with drift, and determine explicitly all minimal harmonic functions. All this is carried out with a strong emphasis on understanding and using the geometric features of Sol(p,q), and in particular the fact that it can be described as the horocyclic product of two hyperbolic planes with curvatures -p2 and -q2, respectively.

Summary

We haven't generated a summary for this paper yet.