Papers
Topics
Authors
Recent
Search
2000 character limit reached

A BK inequality for randomly drawn subsets of fixed size

Published 19 May 2011 in math.PR | (1105.3862v2)

Abstract: The BK inequality (\cite{BK85}) says that,for product measures on ${0,1}n$, the probability that two increasing events $A$ and $B$ `occur disjointly' is at most the product of the two individual probabilities. The conjecture in \cite{BK85} that this holds for {\em all} events was proved by Reimer (cite{R00}). Several other problems in this area remained open. For instance, although it is easy to see that non-product measures cannot satisfy the above inequality for {\em all} events,there are several such measures which, intuitively, should satisfy the inequality for all{\em increasing} events. One of the most natural candidates is the measure assigning equal probabilities to all configurations with exactly $k$ 1's (and probability 0 to all other configurations). The main contribution of this paper is a proof for these measures. We also point out how our result extends to weighted versions of these measures, and to products of such measures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.