A BK inequality for randomly drawn subsets of fixed size (1105.3862v2)
Abstract: The BK inequality (\cite{BK85}) says that,for product measures on ${0,1}n$, the probability that two increasing events $A$ and $B$ `occur disjointly' is at most the product of the two individual probabilities. The conjecture in \cite{BK85} that this holds for {\em all} events was proved by Reimer (cite{R00}). Several other problems in this area remained open. For instance, although it is easy to see that non-product measures cannot satisfy the above inequality for {\em all} events,there are several such measures which, intuitively, should satisfy the inequality for all{\em increasing} events. One of the most natural candidates is the measure assigning equal probabilities to all configurations with exactly $k$ 1's (and probability 0 to all other configurations). The main contribution of this paper is a proof for these measures. We also point out how our result extends to weighted versions of these measures, and to products of such measures.