Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pivotal estimation via square-root Lasso in nonparametric regression (1105.1475v8)

Published 7 May 2011 in stat.ME, math.ST, and stat.TH

Abstract: We propose a self-tuning $\sqrt{\mathrm {Lasso}}$ method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme cases, such as the infinite variance case and the noiseless case, in contrast to Lasso. We establish various nonasymptotic bounds for $\sqrt{\mathrm {Lasso}}$ including prediction norm rate and sparsity. Our analysis is based on new impact factors that are tailored for bounding prediction norm. In order to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation theory for self-normalized sums to achieve Gaussian-like results under weak conditions. Moreover, we derive bounds on the performance of ordinary least square (ols) applied to the model selected by $\sqrt{\mathrm {Lasso}}$ accounting for possible misspecification of the selected model. Under mild conditions, the rate of convergence of ols post $\sqrt{\mathrm {Lasso}}$ is as good as $\sqrt{\mathrm {Lasso}}$'s rate. As an application, we consider the use of $\sqrt{\mathrm {Lasso}}$ and ols post $\sqrt{\mathrm {Lasso}}$ as estimators of nuisance parameters in a generic semiparametric problem (nonlinear moment condition or $Z$-problem), resulting in a construction of $\sqrt{n}$-consistent and asymptotically normal estimators of the main parameters.

Summary

We haven't generated a summary for this paper yet.