Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pivotal estimation via square-root Lasso in nonparametric regression

Published 7 May 2011 in stat.ME, math.ST, and stat.TH | (1105.1475v8)

Abstract: We propose a self-tuning $\sqrt{\mathrm {Lasso}}$ method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme cases, such as the infinite variance case and the noiseless case, in contrast to Lasso. We establish various nonasymptotic bounds for $\sqrt{\mathrm {Lasso}}$ including prediction norm rate and sparsity. Our analysis is based on new impact factors that are tailored for bounding prediction norm. In order to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation theory for self-normalized sums to achieve Gaussian-like results under weak conditions. Moreover, we derive bounds on the performance of ordinary least square (ols) applied to the model selected by $\sqrt{\mathrm {Lasso}}$ accounting for possible misspecification of the selected model. Under mild conditions, the rate of convergence of ols post $\sqrt{\mathrm {Lasso}}$ is as good as $\sqrt{\mathrm {Lasso}}$'s rate. As an application, we consider the use of $\sqrt{\mathrm {Lasso}}$ and ols post $\sqrt{\mathrm {Lasso}}$ as estimators of nuisance parameters in a generic semiparametric problem (nonlinear moment condition or $Z$-problem), resulting in a construction of $\sqrt{n}$-consistent and asymptotically normal estimators of the main parameters.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.