Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods

Published 7 May 2011 in math.ST and stat.TH | (1105.1404v1)

Abstract: Shrinkage estimators of covariance are an important tool in modern applied and theoretical statistics. They play a key role in regularized estimation problems, such as ridge regression (aka Tykhonov regularization), regularized discriminant analysis and a variety of optimization problems. In this paper, we bring to bear the tools of random matrix theory to understand their behavior, and in particular, that of quadratic forms involving inverses of those estimators, which are important in practice. We use very mild assumptions compared to the usual assumptions made in random matrix theory, requiring only mild conditions on the moments of linear and quadratic forms in our random vectors. In particular, we show that our results apply for instance to log-normal data, which are of interest in financial applications. Our study highlights the relative sensitivity of random matrix results (and their practical consequences) to geometric assumptions which are often implicitly made by random matrix theorists and may not be relevant in data analytic practice.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.