Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Asymptotic Covariance Matrix of the Odds Ratio Parameter Estimator in Semiparametric Log-bilinear Odds Ratio Models (1105.0852v2)

Published 4 May 2011 in math.ST and stat.TH

Abstract: The association between two random variables is often of primary interest in statistical research. In this paper semiparametric models for the association between random vectors X and Y are considered which leave the marginal distributions arbitrary. Given that the odds ratio function comprises the whole information about the association the focus is on bilinear log-odds ratio models and in particular on the odds ratio parameter vector {\theta}. The covariance structure of the maximum likelihood estimator {\theta}^ of {\theta} is of major importance for asymptotic inference. To this end different representations of the estimated covariance matrix are derived for conditional and unconditional sampling schemes and different asymptotic approaches depending on whether X and/or Y has finite or arbitrary support. The main result is the invariance of the estimated asymptotic covariance matrix of {\theta}^ with respect to all above approaches. As applications we compute the asymptotic power for tests of linear hypotheses about {\theta} - with emphasis to logistic and linear regression models - which allows to determine the necessary sample size to achieve a wanted power.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Angelika Franke (1 paper)
  2. Gerhard Osius (1 paper)

Summary

We haven't generated a summary for this paper yet.