Papers
Topics
Authors
Recent
Search
2000 character limit reached

A simpler and more efficient algorithm for the next-to-shortest path problem

Published 3 May 2011 in cs.DS | (1105.0608v1)

Abstract: Given an undirected graph $G=(V,E)$ with positive edge lengths and two vertices $s$ and $t$, the next-to-shortest path problem is to find an $st$-path which length is minimum amongst all $st$-paths strictly longer than the shortest path length. In this paper we show that the problem can be solved in linear time if the distances from $s$ and $t$ to all other vertices are given. Particularly our new algorithm runs in $O(|V|\log |V|+|E|)$ time for general graphs, which improves the previous result of $O(|V|2)$ time for sparse graphs, and takes only linear time for unweighted graphs, planar graphs, and graphs with positive integer edge lengths.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.