Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed motivic sheaves (and weights for them) exist if 'ordinary' mixed motives do (1105.0420v4)

Published 2 May 2011 in math.AG and math.KT

Abstract: The goal of this paper is to prove: if certain 'standard' conjectures on motives over algebraically closed fields hold, then over any 'reasonable' $S$ there exists a motivic $t$-structure for the category of Voevodsky's $S$-motives (as constructed by Cisinski and Deglise). If $S$ is 'very reasonable' (for example, of finite type over a field) then the heart of this $t$-structure (the category of mixed motivic sheaves over $S$) is endowed with a weight filtration with semi-simple factors. We also prove a certain 'motivic decomposition theorem' (assuming the conjectures mentioned) and characterize semi-simple motivic sheaves over $S$ in terms of those over its residue fields. Our main tool is the theory of weight structures. We actually prove somewhat more than the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic $t$-structure is transversal to the Chow weight structure for $S$-motives (that was introduced previously and independently by D. Hebert and the author; weight structures and their transversality with t-structures were also defined by the author in papers). We also deduce several properties of mixed motivic sheaves from this fact. Our reasoning relies on the degeneration of Chow-weight spectral sequences for 'perverse 'etale homology' (that we prove unconditionally); this statement also yields the existence of the Chow-weight filtration for such (co)homology that is strictly restricted by ('motivic') morphisms.

Summary

We haven't generated a summary for this paper yet.