Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces (1105.0407v2)

Published 2 May 2011 in math.FA

Abstract: Let $a$ be a semi-almost periodic matrix function with the almost periodic representatives $a_l$ and $a_r$ at $-\infty$ and $+\infty$, respectively. Suppose $p:\mathbb{R}\to(1,\infty)$ is a slowly oscillating exponent such that the Cauchy singular integral operator $S$ is bounded on the variable Lebesgue space $L{p(\cdot)}(\mathbb{R})$. We prove that if the operator $aP+Q$ with $P=(I+S)/2$ and $Q=(I-S)/2$ is Fredholm on the variable Lebesgue space $L_N{p(\cdot)}(\mathbb{R})$, then the operators $a_lP+Q$ and $a_rP+Q$ are invertible on standard Lebesgue spaces $L_N{q_l}(\mathbb{R})$ and $L_N{q_r}(\mathbb{R})$ with some exponents $q_l$ and $q_r$ lying in the segments between the lower and the upper limits of $p$ at $-\infty$ and $+\infty$, respectively.

Summary

We haven't generated a summary for this paper yet.