Limits of Preprocessing
Abstract: We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning. We show that, subject to a complexity theoretic assumption, none of the considered problems can be reduced by polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, such as induced width or backdoor size. Our results provide a firm theoretical boundary for the performance of polynomial-time preprocessing algorithms for the considered problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.