Papers
Topics
Authors
Recent
Search
2000 character limit reached

Doubly Robust Smoothing of Dynamical Processes via Outlier Sparsity Constraints

Published 28 Apr 2011 in cs.SY, math.OC, and stat.AP | (1104.5286v1)

Abstract: Coping with outliers contaminating dynamical processes is of major importance in various applications because mismatches from nominal models are not uncommon in practice. In this context, the present paper develops novel fixed-lag and fixed-interval smoothing algorithms that are robust to outliers simultaneously present in the measurements {\it and} in the state dynamics. Outliers are handled through auxiliary unknown variables that are jointly estimated along with the state based on the least-squares criterion that is regularized with the $\ell_1$-norm of the outliers in order to effect sparsity control. The resultant iterative estimators rely on coordinate descent and the alternating direction method of multipliers, are expressed in closed form per iteration, and are provably convergent. Additional attractive features of the novel doubly robust smoother include: i) ability to handle both types of outliers; ii) universality to unknown nominal noise and outlier distributions; iii) flexibility to encompass maximum a posteriori optimal estimators with reliable performance under nominal conditions; and iv) improved performance relative to competing alternatives at comparable complexity, as corroborated via simulated tests.

Citations (86)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.