Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model (1104.5200v2)

Published 27 Apr 2011 in cs.DS and cs.NI

Abstract: We study the wireless scheduling problem in the SINR model. More specifically, given a set of $n$ links, each a sender-receiver pair, we wish to partition (or \emph{schedule}) the links into the minimum number of slots, each satisfying interference constraints allowing simultaneous transmission. In the basic problem, all senders transmit with the same uniform power. We give a distributed $O(\log n)$-approximation algorithm for the scheduling problem, matching the best ratio known for centralized algorithms. It holds in arbitrary metric space and for every length-monotone and sublinear power assignment. It is based on an algorithm of Kesselheim and V\"ocking, whose analysis we improve by a logarithmic factor. We show that every distributed algorithm uses $\Omega(\log n)$ slots to schedule certain instances that require only two slots, which implies that the best possible absolute performance guarantee is logarithmic.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Magnus M. Halldorsson (84 papers)
  2. Pradipta Mitra (13 papers)
Citations (65)

Summary

We haven't generated a summary for this paper yet.