Papers
Topics
Authors
Recent
Search
2000 character limit reached

Baire-class $ξ$ colorings: the first three levels

Published 26 Apr 2011 in math.LO and math.GN | (1104.4860v1)

Abstract: The $\mathbb{G}_0$-dichotomy due to Kechris, Solecki and Todor\vcevi\'c characterizes the analytic relations having a Borel-measurable countable coloring. We give a version of the $\mathbb{G}_0$-dichotomy for $\boraxi$-measurable countable colorings when $\xi\leq 3$. A $\boraxi$-measurable countable coloring gives a covering of the diagonal consisting of countably many $\boraxi$ squares. This leads to the study of countable unions of $\boraxi$ rectangles. We also give a Hurewicz-like dichotomy for such countable unions when $\xi\leq 2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.