Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On comparing Zagreb indices (1104.4262v1)

Published 21 Apr 2011 in math.CO

Abstract: Let $G=(V,E)$ be a simple graph with $n = |V|$ vertices and $m = |E|$ edges. The first and second Zagreb indices are among the oldest and the most famous topological indices, defined as $M_1 = \sum_{i \in V} d_i2$ and $M_2 = \sum_{(i, j) \in E} d_i d_j$, where $d_i$ denote the degree of vertex $i$. Recently proposed conjecture $M_1 / n \leqslant M_2 / m$ has been proven to hold for trees, unicyclic graphs and chemical graphs, while counterexamples were found for both connected and disconnected graphs. Our goal is twofold, both in favor of a conjecture and against it. Firstly, we show that the expressions $M_1/n$ and $M_2/m$ have the same lower and upper bounds, which attain equality for and only for regular graphs. We also establish sharp lower bound for variable first and second Zagreb indices. Secondly, we show that for any fixed number $k\geqslant 2$, there exists a connected graph with $k$ cycles for which $M_1/n>M_2/m$ holds, effectively showing that the conjecture cannot hold unless there exists some kind of limitation on the number of cycles or the maximum vertex degree in a graph. In particular, we show that the conjecture holds for subdivision graphs.

Summary

We haven't generated a summary for this paper yet.