Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement-Driven Spread of Innovations and Fads (1104.4107v2)

Published 20 Apr 2011 in physics.soc-ph, cond-mat.stat-mech, and cs.SI

Abstract: We propose kinetic models for the spread of permanent innovations and transient fads by the mechanism of social reinforcement. Each individual can be in one of M+1 states of awareness 0,1,2,...,M, with state M corresponding to adopting an innovation. An individual with awareness k<M increases to k+1 by interacting with an adopter. Starting with a single adopter, the time for an initially unaware population of size N to adopt a permanent innovation grows as ln(N) for M=1, and as N^{1-1/M} for M\>1. The fraction of the population that remains clueless about a transient fad after it has come and gone changes discontinuously as a function of the fad abandonment rate lambda for M>1. The fad dies out completely in a time that varies non-monotonically with lambda.

Citations (53)

Summary

We haven't generated a summary for this paper yet.