Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal strategies for a game on amenable semigroups

Published 15 Apr 2011 in cs.GT, math.GR, and math.PR | (1104.3098v3)

Abstract: The semigroup game is a two-person zero-sum game defined on a semigroup S as follows: Players 1 and 2 choose elements x and y in S, respectively, and player 1 receives a payoff f(xy) defined by a function f from S to [-1,1]. If the semigroup is amenable in the sense of Day and von Neumann, one can extend the set of classical strategies, namely countably additive probability measures on S, to include some finitely additive measures in a natural way. This extended game has a value and the players have optimal strategies. This theorem extends previous results for the multiplication game on a compact group or on the positive integers with a specific payoff. We also prove that the procedure of extending the set of allowed strategies preserves classical solutions: if a semigroup game has a classical solution, this solution solves also the extended game.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.