2000 character limit reached
Rainbow Matchings: existence and counting (1104.2702v1)
Published 14 Apr 2011 in math.CO and cs.DM
Abstract: A perfect matching M in an edge-colored complete bipartite graph K_{n,n} is rainbow if no pair of edges in M have the same color. We obtain asymptotic enumeration results for the number of rainbow matchings in terms of the maximum number of occurrences of a color. We also consider two natural models of random edge-colored K_{n,n} and show that, if the number of colors is at least n, then there is with high probability a random matching. This in particular shows that almost every square matrix of order n in which every entry appears at most n times has a Latin transversal.