2000 character limit reached
Sequential Lower Semi-Continuity of Non-Local Functionals (1104.2686v1)
Published 14 Apr 2011 in math.FA
Abstract: We give a necessary and sufficient condition for non-local functionals on vector-valued Lebesgue spaces to be weakly sequentially lower semi-continuous. Here a non-local functional shall have the form of a double integral of a density which depends on the function values at two different points. The characterisation we get is essentially that the density has to be convex in one variable if we integrate over the other one with an arbitrary test function in it. Moreover, we show that this condition is in the case of non-local functionals on real-valued Lebesgue spaces (up to some equivalence in the density) equivalent to the separate convexity of the density.