Papers
Topics
Authors
Recent
2000 character limit reached

The Discrepancy Principle for Choosing Bandwidths in Kernel Density Estimation

Published 12 Apr 2011 in math.ST, stat.ME, and stat.TH | (1104.2190v4)

Abstract: We investigate the discrepancy principle for choosing smoothing parameters for kernel density estimation. The method is based on the distance between the empirical and estimated distribution functions. We prove some new positive and negative results on L_1-consistency of kernel estimators with bandwidths chosen using the discrepancy principle. Consistency crucially depends on a rather weak H\"older condition on the distribution function. We also unify and extend previous results on the behaviour of the chosen bandwidth under more strict smoothness assumptions. Furthermore, we compare the discrepancy principle to standard methods in a simulation study. Surprisingly, some of the proposals work reasonably well over a large set of different densities and sample sizes, and the performance of the methods at least up to n=2500 can be quite different from their asymptotic behavior.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.