Papers
Topics
Authors
Recent
2000 character limit reached

Variational splines on Riemannian manifolds with applications to integral geometry

Published 9 Apr 2011 in math.FA | (1104.1709v1)

Abstract: We extend the classical theory of variational interpolating splines to the case of compact Riemannian manifolds. Our consideration includes in particular such problems as interpolation of a function by its values on a discrete set of points and interpolation by values of integrals over a family of submanifolds. The existence and uniqueness of interpolating variational spline on a Riemannian manifold is proven. Optimal properties of such splines are shown. The explicit formulas of variational splines in terms of the eigen functions of Laplace-Beltrami operator are found. It is also shown that in the case of interpolation on discrete sets of points variational splines converge to a function in $C{k}$ norms on manifolds. Applications of these results to the hemispherical and Radon transforms on the unit sphere are given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.