Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing generalized inverses using LU factorization of matrix product (1104.1697v1)

Published 9 Apr 2011 in cs.SC, cs.DS, and math.FA

Abstract: An algorithm for computing {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4} -inverses and the Moore-Penrose inverse of a given rational matrix A is established. Classes A(2, 3)s and A(2, 4)s are characterized in terms of matrix products (R*A)+R* and T*(AT*)+, where R and T are rational matrices with appropriate dimensions and corresponding rank. The proposed algorithm is based on these general representations and the Cholesky factorization of symmetric positive matrices. The algorithm is implemented in programming languages MATHEMATICA and DELPHI, and illustrated via examples. Numerical results of the algorithm, corresponding to the Moore-Penrose inverse, are compared with corresponding results obtained by several known methods for computing the Moore-Penrose inverse.

Citations (34)

Summary

We haven't generated a summary for this paper yet.