Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Fermi-Pasta-Ulam recurrence and related phenomena for 1D shallow-water waves in a finite basin (1104.0853v1)

Published 5 Apr 2011 in physics.flu-dyn

Abstract: In this work, different regimes of the Fermi-Pasta-Ulam (FPU) recurrence are simulated numerically for fully nonlinear "one-dimensional" potential water waves in a finite-depth flume between two vertical walls. In such systems, the FPU recurrence is closely related to the dynamics of coherent structures approximately corresponding to solitons of the integrable Boussinesq system. A simplest periodic solution of the Boussinesq model, describing a single soliton between the walls, is presented in an analytical form in terms of the elliptic Jacobi functions. In the numerical experiments, it is observed that depending on a number of solitons in the flume and their parameters, the FPU recurrence can occur in a simple or complicated manner, or be practically absent. For comparison, the nonlinear dynamics of potential water waves over nonuniform beds is simulated, with initial states taken in the form of several pairs of colliding solitons. With a mild-slope bed profile, a typical phenomenon in the course of evolution is appearance of relatively high (rogue) waves, while for random, relatively short-correlated bed profiles it is either appearance of tall waves, or formation of sharp crests at moderate-height waves.

Summary

We haven't generated a summary for this paper yet.