Integrability of (non-)linear rough differential equations and integrals (1104.0577v3)
Abstract: Integrability properties of (classical, linear, linear growth) rough differential equations (RDEs) are considered, the Jacobian of the RDE flow driven by Gaussian signals being a motivating example. We revisit and extend some recent ground-breaking work of Cass-Litterer-Lyons in this regard; as by-product, we obtain a user-friendly "transitivity property" of such integrability estimates. We also consider rough integrals; as a novel application, uniform Weibull tail estimates for a class of (random) rough integrals are obtained. A concrete example arises from the stochastic heat-equation, spatially mollified by hyper-viscosity, and we can recover (in fact: sharpen) a technical key result of [Hairer, Comm.PureAppl.Math.64,no.11,(2011),1547-1585].
Collections
Sign up for free to add this paper to one or more collections.