Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transitions in a Probabilistic Interface Growth Model (1104.0575v2)

Published 4 Apr 2011 in cond-mat.stat-mech

Abstract: We study a generalization of the Wolf-Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number $n_i$ of bindings of the site $i$: $p_i\propto n_i\nu$. Through extensively simulations, in $(1+1)$-dimensions, we find three behavior depending of the $\nu$ value: {\it i}) if $\nu$ is small, a crossover from the Mullins-Hering to the Edwards-Wilkinson (EW) universality class; {\it ii}) for intermediate values of $\nu$, a crossover from the EW to the Kardar-Parisi-Zhang (KPZ) universality class; {\it iii}) and, finally, for large $\nu$ values, the system is always in the KPZ class. In $(2+1)$-dimensions, we obtain three different behaviors: {\it i}) a crossover from the Villain-Lai-Das Sarma to the EW universality class, for small $\nu$ values; {\it ii}) the EW class is always present, for intermediate $\nu$ values; {\it iii}) a deviation from the EW class is observed, for large $\nu$ values.

Summary

We haven't generated a summary for this paper yet.