Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster structures on quantum coordinate rings (1104.0531v3)

Published 4 Apr 2011 in math.QA, math.RA, and math.RT

Abstract: We show that the quantum coordinate ring of the unipotent subgroup N(w) of a symmetric Kac-Moody group G associated with a Weyl group element w has the structure of a quantum cluster algebra. This quantum cluster structure arises naturally from a subcategory C_w of the module category of the corresponding preprojective algebra. An important ingredient of the proof is a system of quantum determinantal identities which can be viewed as a q-analogue of a T-system. In case G is a simple algebraic group of type A, D, E, we deduce from these results that the quantum coordinate ring of an open cell of a partial flag variety attached to G also has a cluster structure.

Summary

We haven't generated a summary for this paper yet.