Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The local Langlands correspondence for GL_n in families (1104.0321v1)

Published 2 Apr 2011 in math.NT

Abstract: Let E be a nonarchimedean local field with residue characteristic l, and suppose we have an n-dimensional representation of the absolute Galois group G_E of E over a reduced complete Noetherian local ring A with finite residue field k of characteristic p different from l. We consider the problem of associating to any such representation an admissible A[GL_n(E)]-module in a manner compatible with the local Langlands correspondence at characteristic zero points of Spec A. In particular we give a set of conditions that uniquely characterise such an A[GL_n(E)]-module if it exists, and show that such an A[GL_n(E)]-module always exists when A is the ring of integers of a finite extension of Q_p. We also use these results to define a "modified mod p local Langlands correspondence" that is more compatible with specialization of Galois representations than the mod p local Langlands correspondence of Vigneras.

Summary

We haven't generated a summary for this paper yet.