Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using a Non-Commutative Bernstein Bound to Approximate Some Matrix Algorithms in the Spectral Norm (1103.5453v1)

Published 28 Mar 2011 in cs.DS

Abstract: We focus on \emph{row sampling} based approximations for matrix algorithms, in particular matrix multipication, sparse matrix reconstruction, and \math{\ell_2} regression. For \math{\matA\in\R{m\times d}} (\math{m} points in \math{d\ll m} dimensions), and appropriate row-sampling probabilities, which typically depend on the norms of the rows of the \math{m\times d} left singular matrix of \math{\matA} (the \emph{leverage scores}), we give row-sampling algorithms with linear (up to polylog factors) dependence on the stable rank of \math{\matA}. This result is achieved through the application of non-commutative Bernstein bounds. Keywords: row-sampling; matrix multiplication; matrix reconstruction; estimating spectral norm; linear regression; randomized

Citations (6)

Summary

We haven't generated a summary for this paper yet.